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[1] Snow cover area affects snowmelt, soil moisture, evapotranspiration, and ultimately
streamflow. For the Distributed Model Intercomparison Project – Phase 2 Western basins,
we assimilate satellite-based fractional snow cover area (fSCA) from the Moderate
Resolution Imaging Spectroradiometer, or MODIS, into the National Weather Service
(NWS) SNOW-17 model. This model is coupled with the NWS Sacramento Heat Transfer
(SAC-HT) model inside the National Aeronautics and Space Administration’s (NASA)
Land Information System. SNOW-17 computes fSCA from snow water equivalent (SWE)
values using an areal depletion curve. Using a direct insertion, we assimilate fSCAs in two
fully distributed ways: (1) we update the curve by attempting SWE preservation, and (2) we
reconstruct SWEs using the curve. The preceding are refinements of an existing simple,
conceptually guided NWS algorithm. Satellite fSCA over dense forests inadequately
accounts for below-canopy snow, degrading simulated streamflow upon assimilation during
snowmelt. Accordingly, we implement a below-canopy allowance during assimilation. This
simplistic allowance and direct insertion are found to be inadequate for improving
calibrated results, still degrading them as mentioned above. However, for streamflow
volume for the uncalibrated runs, we obtain: (1) substantial to major improvements
(64–81%) as a percentage of the control run residuals (or distance from observations),
and (2) minor improvements (16–22%) as a percentage of observed values. We highlight
the need for detailed representations of canopy-snow optical radiative transfer processes in
mountainous, dense forest regions if assimilation-based improvements are to be seen in
calibrated runs over these areas.
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1. Introduction
[2] Snow stores and releases water at different time scales,

providing a significant portion of runoff and the human water
supply, both globally (e.g., one-sixth of the population:
Bartnett et al. [2005]) and particularly over snowmelt-domi-
nated regions (e.g., half in the Western US: Serreze et al.
[2001]). Snowpack-caused runoff delay has major relevance
for hydrologic models simulating downstream surface and
groundwater availability for coupling with water use models
(e.g., Schmid and Hanson [2009] coupling with irrigated
agriculture model for Western US Sierra Nevada).

[3] In many current hydrologic and land surface models,
mountain region simulations reflect snow parameterization
limitations related to inadequate model representation of
forcing, topography, net radiation, fractional snow cover and
interactions with mainly forest vegetation, among other fac-
tors [e.g., Nijssen et al., 2003]. However, accurate spatial
distribution of snow properties in these regions, including
fractional snow covered area or extent (fSCA) is considered
important for adequately predicting snowmelt, soil moisture,
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evapotranspiration, and ultimately streamflow. Besides the
commonly studied snow depth, fSCA also directly influences
snow energy and mass balances to provide melt and stream-
flow [Blöschl, 1991]. The fSCA also strongly affects the
land surface energy balance in weather and climate models
through high snow albedo.

[4] This study focuses on improving modeled streamflow
by assimilating satellite-based fSCA for the challenging case
of mountainous, dense forests. Past studies in such basins
have struggled to demonstrate improvements in late melt-
season streamflow simulations through late melt-season fSCA
assimilation. Example workarounds accordingly employed
are switching off the assimilation during the late melt season
to avoid degrading simulations, and using assimilation-based
forecasts starting earlier in the melt season. With this in mind,
we attempt to reject the null hypothesis that the state assimila-
tion of fSCA during the late melt season does not improve
late melt-season streamflow simulations in a prediction sense.
Section 2 provides a literature review of the effect of densely
forested canopy on remotely sensed snow extent. This is fol-
lowed by a review of the influence of fSCA assimilation on
modeled streamflow in section 3. Next, sections 4 and 5
detail the study basins and data, and the model and assimi-
lation methodology used. Finally, sections 6 and 7 cover
the analysis of results, discussions and recommendations
for future work.

2. Snow Extent Data and the Densely Forested
Canopy Effect

[5] Satellite data have unmatched spatial and temporal
coverage, providing fSCA estimates which could poten-
tially improve hydrologic predictions. However, such
fSCA maps can feature significant topography-caused noise
over mountains [Nagler et al., 2008]. Dense canopy cover-
age can have an even greater effect : existing simple repre-
sentations of canopy radiative transfer in most remotely
sensed snow product algorithms are inadequate for use
over forests, wherein ‘‘remain one of the largest sources of
uncertainty in the remote sensing of snow’’ for both
electro-optical and microwave sensors [e.g., Essery et al.,
2009; Foster et al., 1991; Hall et al., 1998; Simic et al.,
2004; Vikhamar and Solberg, 2002]. Also, especially
underneath the canopy, blockage from trees makes forest
snow mapping more difficult at large off-nadir sensor view
angles (e.g., for the Moderate Resolution Imaging Spectror-
adiometer or MODIS sensor; http://modis.gsfc.nasa.gov/)
[e.g., Hall et al., 1998, 2001; Liu et al., 2008; Dozier et al.,
2008].

[6] Remotely sensed snow mapping uncertainty depends
mainly on forest canopy type and density, e.g., microwave
estimates degrade for densities above 60–70% [Cline et al.,
2004; Pulliainen et al., 2001], and electro-optical instru-
ments like MODIS underestimate snow for closed-canopy
evergreen forests when compared against open-canopy
areas [Simic et al., 2004]. Limited information gleaned
from viewable canopy gaps is insufficient to establish the
below-canopy snow extent [e.g., Essery et al., 2009]. Some
factors causing differences between snow extents on and
below the canopy include: canopies shading underlying
snow from both direct and diffuse solar radiation [e.g.,
Pomeroy and Dion, 1996], and the nature of net radiation

in dense canopies where sometimes increased longwave
radiation [Pomeroy and Granger, 1997] and even convec-
tive terms [Sicart et al., 2004] potentially outweigh the
effects of decreased shortwave radiation.

[7] Field studies have investigated the relative snow
amounts, extents and durations present in open areas, forest
canopy gaps, above the canopy, and below the canopy (see
citations in the modeling study Rutter et al. [2009] and
Varhola at al. [2010]). While adjusting the remotely sensed
snow depth using field measurements of forest cover has
been attempted, e.g., for passive microwave observations
[e.g., Armstrong and Brodzik, 2001; Clifford, 2010], the
corresponding fSCA adjustment has received limited atten-
tion other than the simple assumption that the fSCA value
in the forested portion of the pixel is same as that in the
entire pixel [Molotch and Margulis, 2008]. Studies attempt-
ing better field-based fSCA adjustment include those by
Liu et al. [2008] investigating the dependence of the
sensor-viewable snow extent on the view angle, and Rice
et al. [2010] conducting intensive in-situ gridded measure-
ments of snow presence to adjust biases in the MODIS-
derived MODSCAG product [Painter et al., 2009] for
hydrologic modeling over the Sierra Nevada.

[8] Note that snow-vegetation radiative interactions can
also complicate fSCA mapping indirectly based on snow-
free vegetation properties and extents. For example, Robin
et al. [2007] found vegetation index retrievals complicated
by the presence of coniferous forest snow.

[9] Efforts to improve snow parameterizations have tra-
ditionally been associated with open areas, and hence are
mostly inadequate for forested areas [Essery et al., 2009]
where the above mentioned knowledge gap relating overall
snow extents to those in viewable canopy gaps remains.
One option to obtain or properly utilize the remotely sensed
fSCA is to use detailed 3-dimensional canopy radiative
transfer [Pinty et al., 2004] techniques, such as a geometric
optical-radiative transfer component using view angles,
canopy profile and density, etc. to calculate variables like
the viewable gap fraction [Liu et al., 2008]. This can be
applied either in the remotely sensed product algorithm or
the corresponding postprocessor, or in the hydrology model
itself as in Hardy et al. [1997].

3. Existing Studies of the Influence of fSCA
Assimilation on Simulated Streamflow

[10] Most existing fSCA assimilation studies [e.g., Liston
et al., 1999; Rodell and Houser, 2004; Andreadis and
Lettenmaier, 2006; Molotch and Margulis, 2008; Su et al.,
2008; De Lannoy et al., 2012] focused on improving mod-
eled snow water equivalent (SWE), with a minority focusing
on improving streamflow. Nonassimilation studies focused
on improving streamflow include those where fSCA was
used directly as an input (forcing) [e.g., Li and Williams,
2008], or for model calibration [e.g., Udnaes et al., 2007;
Parajka and Blöschl, 2008; Finger et al., 2011]. Below, we
only discuss studies of the effect of fSCA assimilation on
the modeled runoff/streamflow.

[11] Studies assimilating fSCA to improve streamflow
had varying results : (1) Johansson et al. [2003] found
ambiguous results when the model states are reset to those
of the closest date where modeled fSCA equals the
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observation; (2) Huttunen et al. [2005] obtained mixed
results on a boreal drainage basin; (3) Dressler et al.
[2006] obtained reduced and increased streamflow simula-
tion performance, respectively, for relatively complex and
relatively homogeneous terrains in snow-dominated basins,
with the performance of the former catching up with that of
its nonassimilation counterpart when the assimilation was
limited to the accumulation season; (4) Clark et al. [2006]
found only minor improvements near the end of snowmelt
season; (5) McGuire et al. [2006] showed the best improve-
ments in forecasts made earliest in the melt season; (6)
Udnaes et al. [2007] found that only some updates improved
runoff, and most frequently at large SCA values; (7) Zaitchik
and Rodell [2009] compared runoff as an ‘unconditioned’
sensitivity exercise (i.e., no comparison against actual obser-
vations) to show an increase and improvement in simulated
snow volume, though their Figure 4 shows difficulty in simu-
lating late-season SWE over the West Coast; (8) Roy et al.
[2010] observed varying improvement in the streamflow
Nash-Sutcliffe coefficient and the Root Mean Square Error
(RMSE) using MODIS and NOAA IMS (National Oceanic
and Atmospheric Administration Ice Mapping System) snow
area data; (9) Tang and Lettenmaier [2010] found streamflow
simulation errors were not necessarily reduced, with 2-week
lead-time forecasts during snow ablation improving but not
seasonal forecasts; (10) Thirel et al. [2011] found that dis-
charge improved using the particle filter assimilation method
but deteriorated with the ensemble Kalman filter; and (11)
Arsenault [2011] also performed an unconditioned sensitivity
exercise at SNOTEL-coincident locations and demonstrated
a reduction in snow mass and hence runoff during melt.
Below, we highlight the similarities and differences between
these studies and this paper.

[12] Our study basins’ physiography includes the double
complexity of being mountainous and densely forested,
with earlier studies mostly featuring one of these factors.
The only successful study incorporating both seems to be
by Roy et al. [2010] conducted over mostly forested basins
(the Du Nord watershed is 96.2% forest-covered with
47.7% evergreen, and the Aux �Ecorces basin is 83.5% for-
ested with 12.3% evergreen). Somewhat puzzling is their
improvement in streamflow even though their Figure 3
shows MODIS SCA decreasing relatively early to 0. Their
methodology inserts a large 4 cm snow value into a snow-
free model grid box when MODIS indicates snow but the
model does not (see section 5.2: our study insertion is
�5 mm). The authors explain that this value possibly com-
pensates for factors like the underestimation of winter pre-
cipitation; however, streamflow in their control simulation
(which lacks such a compensation) does not follow the early
decrease of the MODIS SCA. We speculate that a signifi-
cant reason for their streamflow improvement is their large
4 cm snow insertion, since, per Simic et al. [2004]: (1) their
Figure 8 shows Canadian evergreen and deciduous forests
having a comparatively higher percentage of snow commis-
sion error than of omission, and (2) the 1 cm threshold is
most representative of areal snow cover within the pixel.

[13] Regarding the transition to bare ground, Clark et al.
[2006], Roy et al. [2010] and Udnaes et al. [2007] (some
basins) with differing streamflow improvement results
faced the problems of: (1) a substantial proportion of
spring streamflow occurring before any bare ground is

exposed, and (2) the transition from 100% snow-covered to
snow-free conditions occurring fairly quickly. The rapid
snow melt is evident in the Zaitchik and Rodell [2009] and
Thirel et al. [2011] studies.

[14] While other studies used fractional-valued spatial
aggregates of binary snow/no-snow data [e.g., Roy et al.,
2010; Thirel et al., 2011], our study assimilates fSCA at its
base resolution. This is conceptually similar to Dressler
et al. [2006], Udnaes et al. [2007] and Arsenault [2011],
and to Clark et al. [2006] who used synthetic fSCA. Also,
our snow model areal depletion curve (ADC) considers
more depletion behavior characteristics than the simple
ADC typically used, incorporating: (1) interannual consis-
tency in the spatial pattern of relative snow amounts
through a simple uniform scaling of the ADC shape across
years, and (2) a temporary deviation of fSCA off the curve
along a ‘‘new snow’’ line to 100% and back when a mini-
mum new snowfall occurs on a partially bare area. While
the ‘new snow’ line concept rarely exists in other studies
(e.g., Huttunen et al. [2005]), the ADC shape preservation
and scaling between years is present in the Johansson et al.
[2003], Dressler et al. [2006], McGuire et al. [2006], and
Tang and Lettenmaier [2010] studies (see Andreadis and
Lettenmaier [2006] for details on the latter two). Typically,
other models, e.g., the Noah LSM [Chen et al., 1996; Ek
et al., 2003] investigated by Zaitchik and Rodell [2009],
have fixed ADCs that depend only on land cover (i.e., the
depletion curve SWE at the maximum fSCA is a fixed max-
imum and does not reflect the variation in these maximum
SWEs among different accumulation periods).

[15] Previous studies have also used multiple fSCA
assimilation methods including: (1) resetting model states
to those of the closest date where the modeled fSCA equals
the observation [Johansson et al., 2003], (2) sequentially
correcting the simulation by changing inputs such as tem-
perature, precipitation and potential evaporation so that the
observed SCA and other measured states agree with simu-
lations [Huttunen et al., 2005], and (3) multiplying a snow
depth with the snow extent to get effective SWE for a pixel
as in Dressler et al. [2006]. Regardless, the assimilation
approach is typically either threshold-based or ADC-based
using the fSCA versus SWE-based ADC. While our (and
most other) studies follow the latter approach, some studies
utilized rule-based updating where the snow presence deci-
sion is based on an fSCA threshold at the model’s resolu-
tion, e.g., McGuire et al. [2006], Roy et al. [2010] and
Tang and Lettenmaier [2010].

[16] Our study uses quality-controlled forcing data
from Phase 2 of the Distributed Model Intercomparison
Project (DMIP2) (see http://www.nws.noaa.gov/oh/hrl/
dmip/2/) [Smith et al., 2010a], and, therefore, does not
attempt to nudge meteorological forcings a day or more in
advance of assimilation like Huttunen et al. [2005], Udnaes
et al. [2007] and Zaitchik and Rodell [2009]. We apply a
below-canopy allowance to observed fSCA during assimi-
lation to account for below-canopy snow, while other tech-
niques include the pixel canopy correction factor for
scaling up the snow extent by Dressler et al. [2006]. Like
our study, most previous assimilation studies were not en-
semble-based. The exceptions were Clark et al. [2006] and
Thirel et al. [2011], and also Arsenault [2011] which used
an ensemble scheme in addition to direct insertion. Our
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study is a first-cut direct insertion attempt at using and
updating the depletion curve and model states, with devel-
opment of ensemble-based techniques left for future work.

4. Basins and Data Used
[17] As mentioned above, our study is conducted over

the DMIP2 Western US basins and is forced with hourly
DMIP2 temperature and precipitation on the �4 km Hydro-
logic Rainfall Analysis Project (HRAP) [Greene and
Hudlow, 1982] grid. We assimilate MODIS satellite-based
fSCAs into this distributed DMIP2-type model simulation.
In addition to comparisons of modeled versus observed
streamflow, modeled SWE values are also compared against
SNODAS SWE analyses [Carroll et al., 2001; National
Operational Hydrologic Remote Sensing Center (NOHRSC),
2004].

4.1. DMIP2 Western Basins (North Fork American
and the Nested East Fork Carson)

[18] The DMIP2 hydrological model intercomparison
experiment provided a framework to test many distributed
models with operational quality data, for meeting the needs
of operational National Weather Service (NWS) forecasters.
Figure 1 shows the two hydrologically complex DMIP2
Western basins located in the Sierra Nevada Mountains.
Their hydrologic complexities include snow, orographic
precipitation, rain-snow partitioning, forest canopies, steep
slopes and other complex terrain features.

[19] Henceforth, the terms ‘‘Carson’’ and ‘‘American’’
refer to the East Fork of the Carson River and the North
Fork of the American River, respectively. The basins lie on
either side of the Sierra divide [Simpson et al., 2004], with
the Carson on the eastern, leeward, rain-shadowed side
draining south to north, and the American on the wetter,
western, windward side draining westward. Average basin
elevations are 2417 and 1270 m for the Carson and Ameri-
can, respectively, with respective ridgelines near 3400 and
2700 m. Although situated close geographically, their
hydrologic regimes differ greatly: the high-altitude Carson
is snow-dominated, while the lower-elevation American
has rain and mixed rain-snow events. Annual precipitation
ranges from 560–1244 mm over Carson and from 813–1651
mm over the American.

[20] Both basins are geologically dominated by the grano-
diorites of central Sierra Nevada, with additions from vol-
canic and metasedimentary rocks for Carson and American,
respectively [Jeton et al., 1996]. The Carson has shallow
sandy and clay soils, while American is characterized by
clay loams and coarse sandy loams. Vegetation varies from
subalpine and alpine conifer forests and meadows at the
upper elevations of both basins, to chaparral-sagebrush ran-
gelands in the lower elevations of the Carson, and pine-oak
woodlands and shrub rangelands in the lower regions of the
American. Based on the UMD vegetation continuous fields
data (see http://glcf.umiacs.umd.edu/data/vcf/), the Carson’s
higher elevation grid cells that receive most of the snow
have forest canopy coverage ranging from 65% to 70%, and
the lower elevations have coverage ranging from 30% to
60%. The American’s forest canopy coverage has a more
uniform value of approximately 73%. Both basins are largely
unregulated [Jeton et al., 1996; Dettinger et al., 2004],
although there do exist a few small reservoirs and diversions.

[21] While springtime snowmelt runoff dominates Carson
streamflow overall, the largest peaks stem from rain-on-
snow events. In contrast, about two-thirds of streamflow in
the American stems from wintertime rainfall and snowmelt
runoff, and less than one-third from springtime snowmelt
runoff [Dettinger et al., 2004]. Hourly streamflow in the
Carson is measured by two nested USGS instantaneous
stream stage gauges: the downstream Gardnerville gauge
10-30900 in Nevada and the upstream Markleeville gauge
10-308200 in California. These gauges drain, respectively,
922 and 715 km2, while the American gauge 11-427000 at
North Fork Dam 11-427000 in California drains 886 km2.

4.2. MODIS MOD10A1 Fractional Snow Extent
Product

[22] The fractional snow cover area (fSCA) is drawn
from Collection 5 MOD10A1 500 m daily fSCA (see
http://modis-snow-ice.gsfc.nasa.gov) [Riggs et al., 2006]
obtained by the MODIS electro-optical sensor on the Terra
spacecraft. The MOD10A1 fSCA calculation involves a
statistical-linear equation [Salomonson and Appel, 2004,
2006] to the Normalized Difference Snow Index (NDSI).
The assumed ‘‘truth’’ data for this equation were binary
snow presence values from the Landsat-7 Enhanced The-
matic Mapper-Plus (ETMþ ; see http://landsat.gsfc.nasa.
gov/). Like MODIS, ETMþ also does not properly sense
snow under forest canopy for the Sierra Nevada, but its
finer 30 m resolution can lead to slightly more accuracy
than the MOD10A1 fSCA.

[23] Aggregation of the MOD10A1 data to a spatially
coarser resolution (e.g., our �4 km HRAP grid) can decrease
confidence in the coarser estimates if any 500 m cloud cov-
ered pixels exist. In the 0.05� MOD10C1 MODIS fSCA prod-
uct, the confidence index (CI) and the snow extent are the
percentage of cloud-free pixels and binary snow pixels among
all land pixels, respectively. MOD10A1’s mutually exclusive
mapping of cloud and snow pixels means the MOD10C1
extent calculation assumes no snow under cloud pixels,
whereas a possibly better assumption is that the proportion of
snow-free land versus snow-covered land among the cloud-
free pixels is also maintained among the cloud pixels. We
accordingly calculate the CI but by using fSCA instead of bi-
nary snow values, where the coarser grid’s fSCA is the aver-
age of the cloud-free pixels’ fSCAs. The Land Information
System software (LIS) [Kumar et al., 2006; Peters-Lidard
et al., 2007] directly reads the MOD10A1 via our additional
coded internal reader utilizing Hierarchical Data Format–
Earth Observing System (HDF-EOS) library tools. The LIS
integrates satellite- and ground-based observational data with
advanced land modeling techniques to produce optimal fields
of land surface states and fluxes. Our study assimilates fSCA
values with a high CI value of 80% (compared to values of
50–80% in Andreadis and Lettenmaier [2006], 90% in Hall
et al. [2010]). Lower CI thresholds have been used in other
studies in an attempt to retain more information during snow-
fall when clouds are present (e.g., 6% by Rodell and Houser
[2004] and Zaitchik and Rodell [2009]).

4.3. SNODAS Snow Analysis Product

[24] The SNODAS [Carroll et al., 2001; NOHRSC,
2004] is a spatially distributed modeling and data assimila-
tion framework which attempts to provide the best possible
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physically consistent (i.e., snow energy and mass balance
based) estimates of snow properties on a 1-km grid throughout
the US and parts of Canada to support hydrologic modeling
and analysis. It assimilates observations from ground stations,

satellites, and airborne passive gamma-ray sensors. These
gamma-ray sensors may potentially sense snow better under
the canopy in mountainous forests than do their electro-optical
remote sensing counterparts (e.g., MODIS). Model forcings

Figure 1. Overview of the DMIP2 Western basins used in this study (adapted from Jeton et al. [1996]
and Smith et al. [2010b]) showing stream gauge locations.
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includes downscaled fields from numerical weather prediction
models, surface weather observations, satellite-derived solar
radiation and radar-derived precipitation.

5. Model and Assimilation Methodology
5.1. NOAA OHD’s Hydrology Component Models and
Their Porting Into LIS

[25] The National Oceanic and Atmospheric Administra-
tion’s Hydrology Laboratory Research Distributed Hydrologic
Model (HL-RDHM) is an updated version of the Hydrology
Laboratory-Research Modeling System (HL-RMS) [Koren
et al., 2004]. It includes gridded hydrological model features
and components. To exploit LIS data handling and assimila-
tion capabilities, we ported into LIS the following HL-RDHM
components: the gridded forcing reader, the SNOW-17 snow
model [Anderson, 1973, 2006], and the Sacramento Heat
Transfer (SAC-HT) [Koren et al., 2007; Burnash, 1995] sur-
face water balance model. The hill- and channel-slope runoff
routing postprocessor utilizes a physically based kinematic
wave approach that provides unconditional stability [Reed,
2003; Koren et al., 2004].

[26] Meteorological inputs are first passed to the SNOW-
17 model which represents the snowpack as a relatively
simple one-dimensional bulk layer with an associated water
holding capacity. Rain-on-snow periods use energy bal-
ance-based melt computations, while nonrain (or negligible
rain) periods utilize a temperature index equation. During
subfreezing temperatures, a heat deficit function tracks the
energy needed to return to an isothermal, or ripe, snowpack
state. This deficit is a function of the temperature gradient
between the snow surface temperature (the minimum of the
air temperature and 0�C) and a computed snowpack ante-
cedent temperature index. Liquid water storage calculations
using the heat deficit ensure preferential refreezing of any
surface melt or rain before adding to the liquid water stor-
age and outflow (in contrast to Slater and Clark [2006]
where contribution to liquid water storage or outflow is pre-
ferred to refreezing within the snow). Any excess water is
lagged in time and attenuated during transmission through

the snowpack according to the ratio of the ice water equiva-
lent and this excess water. SNOW-17 has 22 parameters
(Table 1). The shape of the areal depletion curve (ADC) is
described by 11 of these parameters, and the ADC and its
adjustment during fSCA assimilation are described in a fol-
lowing section.

[27] Snowmelt from SNOW-17 and precipitation over
snow-free areas force the SAC-HT water balance model.
SAC-HT has upper and lower zone tension and free water
storages representing a relatively thin upper layer, and a
much thicker lower layer. The model simulates evapora-
tion, saturation-excess infiltration, percolation, fast runoff
response components (surface runoff and direct runoff
from impervious surfaces), slower runoff responses (inter-
flow, supplemental and primary base flow), and nonchannel
subsurface outflow.

[28] A grid cell’s drainage density parameter delineates
conceptual overland flow plane hillslopes. SAC-HT hill-
slope fast response runoff drains into a conceptual channel
having the cell diagonal as its maximum length. Hillslope
slow response runoff enters the channel directly.

5.2. SNOW-17 Areal Depletion Curve and Direct
Insertion Assimilation of fSCA

[29] Different areal depletion curve (ADC) types relate
the fSCA to the current fraction of total seasonal runoff, the
time of the year, degree-days, and the SWE. Common
operational ADCs as used in SNOW-17 calculate fSCA
from the modeled SWE (i.e., fSCA is diagnostic).

[30] For a given area, the general shape of such fSCA ver-
sus SWE ADCs is generally similar across years, reflecting
the fairly high interannual consistency in the spatial varia-
tions of the relative snow amounts [e.g., Liston, 1999, 2004;
Luce et al., 1999; Luce and Tarboton, 2004; Anderson,
2006; Kolberg and Gottschalk, 2010; Homan et al., 2011].
Many factors affecting accumulation and melt combine to-
ward this year-to-year consistency, including temperature,
storm type and direction, wind speed, cloudiness, dew-point
temperature, topographical factors like elevation, slope
and aspect, and vegetation [e.g., König and Sturm, 1998;

Table 1. SNOW-17 Parameter Values, Ranges, and Grid Scaling Factorsa

Number Parameter

Values/Ranges (Grid Scaling Factor)

UnitsGUb GCb MU or BUb MCb BCb AUb ACb

1 SCF 1 0.75–1.5 1 1.07–1.25 1–1.15 0.75–1.15 Samec –
2 MFMAX 0.5–1.29 [1] 0.45–1.6 [1] 0.5–1.2 [1] 0.54–1.18 [1.075] 0.54–1.18 [1] 0.51–1.71 [1] 0.51–1.71 [1.5] mm/�C/(6 h)
3 MFMIN 0.2–0.5 [1] 0.08–0.53 [1] 0.2–0.4 [1] 0.08–0.53 [1] 0.08–0.53 [1] 0.08–0.53 [1] 0.08–0.53 [1.5] mm/�C/(6 h)
4 UADJ 0.05 Samec 0.05 Samec Samec 0–0.03 Samec mm/mb/(6 h)
5 SI 500 Samec 500 Samec Samec 999 Samec mm
6 to 16 ADC 0.05, 0.15,

0.29, 0.41,
0.51, 0.60,
0.65, 0.68,

0.72, 0.76, 1.0

Samec Same as GU Samec Samec 0.0, 0.1, 0.2,
0.3, 0.4, 0.5,
0.6, 0.7, 0.8,

0.9, 1.0

Samec –

17 NMF 0.15 Samec 0.15 Samec Samec 0.15 Samec mm/�C/(6 h)
18 TIPM 0.06 0.05–0.1 0.06 0.05–0.1 0.05–0.1 0.1–0.2 Samec 1/(6 h)
19 PXTEMP 2 Samec 2 Samec Samec 2 Samec �C
20 MBASE 0 Samec 0 Samec Samec 0 Samec �C
21 PLWHC 0.03 Samec 0.03 Samec Samec 0.05–0.3 Samec –
22 DAYGM 0.2 0.1–0.3 0.2 0.1–0.3 0.1–0.3 0.3 Samec mm d�1

aParameter descriptions given in section VI of Anderson [2006].
bG ¼ Gardnerville, M ¼Markleeville, B ¼ Blind, A ¼ American, U ¼ Uncalibrated, C ¼ Calibrated.
cSame as respective uncalibrated value/s.
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Luce et al., 1998; Deems et al., 2008; Grünewald et al.,
2010; Rice et al., 2010] (detailed review in Clark et al.
[2011]). In the SNOW-17 ADC, the Snow Index (SI) param-
eter is the upper limit of the Areal Index Ai, which is itself
the variable minimum seasonal SWE accumulation at 100%
fSCA. So SI is the minimum areally averaged SWE above
which fSCA is always at its maximum possible value
(100%), and below which the fSCA is 100% or less depend-
ing on SWE and Ai [Anderson, 2006] (see SI limit in Figure
2a). At maximum fSCA, when Ai updates upward during the
control run (i.e., nonassimilation) accumulation, the entire
ADC instantaneously steepens. At nonmaximum fSCA, the
ADC has an additional ‘new snow’ trajectory behavior when
fSCA temporarily becomes 100% from an arbitrarily set
0.2 mm hr�1 minimum snowfall on a partially bare area.
This 100% fSCA remains until an arbitrarily chosen value of
25% of this newly fallen snow melts, and then the trajectory
linearly returns to the earlier prenew snow trajectory point
on the ADC (Figure 2a).

[31] Our direct insertion technique is based on the NWS
operational manual modification (MOD) of state variables
[Anderson, 2002, 2006] called the Areal Extent of Snow
Cover Change (.AESCCHNG). Note that this MOD notation
differs from the MODIS MOD10A1 data. The .AESCCHNG
preserves SWE by assuming no intrinsic SWE information in
the observed fSCA. Assimilating fSCA gives different ADC
trajectory alterations cases depending on observed fSCA rel-
ative to modeled values. These alterations change snow proc-
esses, SWE and timing of melt down the line, eventually
impacting streamflow. The case depicted in Figure 2b shows
the preassimilation (i.e., ‘‘Old’’) SNOW-17 fSCA where the
entire ADC is instantaneously able to steepen and flatten dur-
ing both snow accumulation and melt phases. By compari-
son, the control run ADC continuously steepens and only
during accumulation. Thus the observed fSCA instead of the
Ai controls the trajectory change, i.e., fSCA is now prognos-
tic as compared to being diagnostic in the control run.
Figures 2c and 2d depict cases starting on the ‘‘new snow’’

Figure 2. Graphical depiction of direct-insertion update cases using example ADCs and ‘‘new snow’’
lines in: (a) Control run; (b–d) .AESCCHNG Mod assimilating fSCA by attempting to preserve SWE;
(e and f) Enhanced Mod where new fSCA ¼ 1.0 enforced if SWE > SI; and (g and h) Runs assimilating
fSCA to derived new SWE using the ADC.

W09557 YATHEENDRADAS ET AL.: SNOW AREA ASSIMILATION IN DENSE FORESTS W09557

7 of 18



line where .AESCCHNG adjusts either this line, or the ADC
(i.e., new Ai), depending on whether the assimilated fSCA is
greater or less, respectively, than the fSCA corresponding to
the SWE on the preassimilation ADC (i.e., see the dashed
‘‘Threshold fSCA’’ line in Figure 2 legend).

[32] Note that .AESCCHNG is used only in cases where
both the modeled and observed fSCA are nonzero (i.e.,
mutually exclusive snow/no-snow cases between model
and observations). Additionally, .AESCCHNG could allow
a new Ai beyond the realistic upper limit of SI. In response
to this, we simultaneously enhance .AESCCHNG to avoid
this Ai upper limit problem and the inaction during the
mutually exclusive snow/no-snow cases. This is accom-
plished by implementing an SI constraint when the SWE
goes above SI to enforce the postassimilation fSCA at
100%, irrespective of the observed fSCA (Figures 2e and
2f). Similar to Rodell and Houser [2004] and Zaitchik and
Rodell [2009], we handle the mutually exclusive cases of
snow/no-snow through allowing ‘unavoidable’ alterations
to the SWE (not shown): (1) For modeled extents at zero,
we add SWE derived from nonzero observed fSCA and an
ADC defined by Ai at 5 mm, and (2) For observed fSCA at
zero, we remove existing modeled SWE.

[33] In addition to these .AESCCHNG-based runs that
assume no intrinsic SWE information in the observed fSCA,
we also test the opposite assumption that combines fSCA
with the existing modeled ADC to reconstruct SWE (Figures
2g and 2h). This differs from the operational Water Equiva-
lent Change (.WECHNG) MOD that adjusts the ADC using
observed SWE.

5.3. Hydrological Model Parameterization, Including
the Areal Depletion Curve

[34] Tables 1–3 lists the parameter names, corresponding
values, ranges and scalar multipliers for the uncalibrated
(a priori) and calibrated runs. The Carson, with two nested
streamflow gauges (Figure 1), serves as the domain for two
uncalibrated and three calibrated control runs. The extra
calibrated control run makes use of the interior Marklee-
ville gauge as a ‘blind’ streamflow simulation point testing

the Gardnerville domain calibrated parameters. The single
American gauge has only one uncalibrated and one cali-
brated control run. The hitherto undetailed process of creat-
ing the uncalibrated and calibrated parameters occurred as
part of the DMIP2 Western basins study [Smith et al.,
2010b], so is briefly outlined below for completeness.

[35] The SNOW-17 a priori values for MFMAX, MFMIN
and MBASE are obtained by combining a derived energy-
based temperature index snowmelt equation for spring snow
pack with the SNOW-17 temperature index model, using
available spatial physiographic data, and wind speed climate
grids from the North American Regional Reanalysis
(NARR) [Mizukami and Koren, 2008]. With the exception
of the ADC, the remaining parameters were derived from
lumped-calibrated values from the California Nevada River
Forecast Center and knowledge of the local snowfall and
wind climatologies. The SAC-HT a priori physically based
parameters are derived from physiographic properties like
soil texture and land cover [Koren et al., 2000; Zhang et al.,
2011]. The routing a priori parameters are from DEM, land
use and empirical equations based on channel hydraulic
data [Koren et al., 2000].

[36] In the manual American calibration process, the dis-
tributed a priori values are first scaled to match pre-existing
calibrated lumped values. All scalar parameters are then
adjusted to replicate observed hourly streamflow using the
following sequential methodology for lumped models
[Smith et al., 2003]: Removal of major biases and errors,
matching of SAC-HT base flows, general SNOW-17 cali-
bration, further calibration to match in-situ observed SWE,
matching of the faster responding surface runoff, and
adjustment of routing parameters. Streamflow matching is
done using visual comparison and multiple goodness-of-fit
measures at different stages, e.g., base flow statistics, sea-
sonal statistics, flow interval biases, run period accumu-
lated error, overall bias and the modified correlation
coefficient [McCuen and Snyder, 1975]. The Carson cali-
bration is similar, except : (1) Parameters from two eleva-
tion zones in a preexisting lumped calibration give two
corresponding zone fields (though single multipliers then

Table 2. SAC-HT Parameter Values, Ranges, and Grid Scaling Factorsa

Number Parameter

Values/Ranges (Grid Scaling Factor)

UnitsGUb GCb MU or BUb MCb BCb AUb ACb

1 UZTWM 23–64 [1] 6.48–42.56 [1.5] 23–64 [1] 6.48–42.56 [2.225] 6.48–42.56 [1.5] 41–59 [1] 41–59 [1.218] mm
2 UZFWM 21–54 [1] 30.97–73.75 [2.5] 38–54 [1] 13.48–42.97 [5] 44.99–63.93 [2.5] 29–53 [1] 29–53 [1.2] mm
3 UZK 0.34–0.75 [1] 0.23–0.47 [0.475] 0.47–0.75 [1] 0.25–0.41 [0.475] 0.25–0.41 [0.475] 0.38–0.51 [1] 0.38–0.51 [0.7] 1 d�1

4 ZPERC 45.2–79.5 [1] 52.2–118.4 [0.875] Same as GU 52.25–118.37 [0.5] 52.23–118.37 [0.875] 44.2–108 [1] Samec –
5 REXP 1.01–2.89 [1] 0.99–2.55 [1] 1.01–2.07 [1] 0.99–2.55 [1] 0.99–2.55 [1] 1.6–2.49 [1] 1.6–2.49 [0.95] –
6 LZTWM 59–252 [1] 28.7–122.5 [0.825] 59–252 [1] 24.8–106.1 [1.0875] 28.67–122.47 [0.825] 92–248 [1] 92–248 [4.7] mm
7 LZFSM 2.5–20.8 [1] 27.69–230.42 [1] 2.5–20.8 [1] 27.69–230.42 [1] 27.69–230.42 [1] 7.9–34.9 [1] 7.9–34.9 [8.5] mm
8 LZFPM 15–194 [1] 23.44–187.55 [1] 89–194 [1] 85.52–186.43 [1] 85.52–186.43 [1] 46–191 [1] 46–191 [1.11] mm
9 LZSK 0.14–0.26 [1] 0.04–0.07 [1] 0.18–0.26 [1] 0.04–0.07 [1.39] 0.04–0.07 [1] 0.14–0.18 [1] 0.14–0.18 [0.5] 1 d�1

10 LZPK 0–0.03 [1] 0–0.01 [1] 0–0.03 [1] 0–0.005 [1] 0–0.005 [1] 0–0.03 [1] 0–0.03 [0.29] 1 d�1

11 PFREE 0.01–0.46 [1] 0.02–0.45 [2] 0.01–0.18 [1] 0.03–0.45 [1.89] 0.03–0.45 [2] 0.08–0.3 [1] 0.08–0.3 [0.51] –
12 PCTIM 0 Samec 0 Samec Samec 0.003 Samec –
13 ADIMP 0 0–0.2 0 0–0.2 0–0.2 0–0.25 Samec –
14 RIVA 0 Samec 0 Samec Samec 0.001 Samec –
15 SIDE 0 Samec 0 Samec Samec 0 Samec –
16 RSERV 0.3 Samec 0.3 Samec Samec 0.3 Samec –

aParameter descriptions given in Table I of Koren et al. [2004].
bG ¼ Gardnerville, M ¼Markleeville, B ¼ Blind, A ¼ American, U ¼ Uncalibrated, C ¼ Calibrated.
cSame as respective uncalibrated values.
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both zones varied together), and (2) A mixture of manual
and Simplified Line Search automated approaches [Kuzmin
et al., 2008] provides the final calibrated distributed values.

[37] A principal difference between our study’s and
DMIP2’s uncalibrated Carson configuration is our nonzero
SI value (versus the DMIP2 a priori SI value of zero). This
change was essential, as a zero SI means only 0% or 100%
values of fSCA are allowed, effectively reducing the fSCA
information during assimilation to rule-based binary values
as in Rodell and Houser [2004]. We instead use the DMIP2
calibrated SI (and associated ADC) for both calibrated and
uncalibrated Carson runs. The DMIP2 uncalibrated zero SI
is simplistic and reflects typical operational constraints on
the assignment of SI and ADC. More broadly, where skill
level or time available is not optimal, a simplistic SI assign-
ment can be either (1) a 0 as mentioned above where the
basin-wide fSCA becomes the percent of pixels with snow
presence, or (2) a very high value like 9999 or 999 mm
(e.g., 999 for American) that is always above existing SWE
values so that bare ground is exposed immediately as
melt starts. This second option is useful when future
plans include refined SI calibration using multiple years of

high-snow data. Snowmelt and streamflow can be very sen-
sitive to SI [Anderson, 2002]. For example, a low (high) SI
gives corresponding lower (higher) Ai, higher (lower)
fSCA derived off the depletion curve, higher (lower) snow-
melt and higher (lower) streamflow.

[38] Similar to the simplistic SI assignment mentioned
above, all American runs feature a simplistic straight line
ADC assignment [Anderson, 2002], which performed well
in DMIP2. However, for the Carson, the more sophisticated
DMIP2-calibrated ADC was derived using previously
established ADCs for well-studied, calibrated basins in the
same region, in addition to information on terrain, vegeta-
tion, climatic conditions, satellite measurements, and any
available fSCA (e.g., from the National Operational Hydro-
logic Remote Sensing Center).

5.4. Snow Assimilation Allowance Under Dense Forest
Canopy During Snow Melt

[39] Figure 3 (top) shows a bird’s-eye nadir view of
satellite-sensed fSCA (fSCAsatellite) components in a con-
ceptual grid square area, based on vertically projecting for-
est canopy and snow extents onto the ground surface: areas

Figure 3. Components of a satellite’s electro-optically sensed snow extent value (top) in a conceptual
(SNOW-17) þ (SAC-HT) grid square, and (bottom) of below-canopy portion V that may be undetected.

Table 3. Routing Parameter Values, Ranges, and Grid Scaling Factorsa

Number Parameter

Values/Ranges (Grid Scaling Factor)

UnitsGUb GCb MU or BUb MCb BCb AUb ACb

1 SLOPH 0.13–0.5 Samec 0.22–0.5 Samec Samec 0.09–0.3 Samec –
2 DS 2.5 Samec 2.5 Samec Samec 2.5 Samec 1 km�1

3 ROUGH 0.15 Samec 0.15 Samec Samec 0.15 Samec –
4 Q0CHN 0.1–1.59 Samec 0.11–1.34 Samec Samec 0.72–2.86 [1] 0.7–2.86 [1.75] m��3/s/m��(2�QMCHN)
5 QMCHN 1.79 Samec 1.79 Samec Samec 1.47 [1] 1.47 [0.8] –

aParameter descriptions given in Table 3.2 of the HL-RDHM user manual at http://www.cbrfc.noaa.gov/present/rdhm/RDHM_3_0_0_User_Manual.pdf.
bG ¼ Gardnerville, M ¼Markleeville, B ¼ Blind, A ¼ American, U ¼ Uncalibrated, C ¼ Calibrated.
cSame as respective uncalibrated value/s.
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I, II, IV and III denote no-canopy no-snow, no-canopy snow,
canopy no-snow, and canopy snow, respectively. Values IV
and III are based above the canopy. The total no-canopy and
canopy areas are (Iþ II) and (IVþ III), respectively. Satellite
sensors miss the below-canopy snow component V of the true
fSCA (fSCAtrue) in Figure 3 (bottom). As such, fSCAsatellite is
the sum of only II and III (II and III values are not separately
given). During accumulation (Figure 3a), snow covers almost
the entire grid square (i.e., I and IV are 0 or negligible), with
the above-canopy amount (III) usually greater than the
below-canopy amount (V), indirectly making fSCAsatellite

equal to fSCAtrue. Assimilating fSCA in this stage is done
without any melt time allowance, contrary to what is done
during the snow melt phase described below.

[40] We assume that the late melt stage roughly occurs
when the above-canopy snow III has become less than the
below-canopy V (Figure 3c). Since the temporal variation
of II, III and V values are unknown under existing model
and data constraints, we provide an unavoidably wide melt-
period upper allowance equal to the forest canopy area on
the fSCAsatellite to be assimilated (here forth denoted the
‘‘UnsensedSnow’’ effect). Note that the ideal allowance
should be a reduced value of IV (or canopy area minus the
III value) instead of the entire canopy area, but this reduc-
tion is unachievable since the III value is not separately
known. The assimilation is limited to constraining postassi-
milation fSCA to outside this allowance-included range
bounded by fSCAsatellite and (fSCAsatellite þ canopy area).
So when preassimilation modeled fSCA (fSCAmodel) is
greater than the (fSCAsatellite þ canopy area) upper bound,
the assimilation process reduces it to equality with that
bound: the assimilation inaccuracy is the entire canopy
area minus the difference between above-canopy III and
below-canopy V. And when the preassimilation fSCAmodel

is less than the fSCAsatellite lower bound, the assimilation
process increases it to the fSCAsatellite value: the assimila-
tion inaccuracy is the difference between III and V.

[41] During early melt periods assumed to occur when the
above-canopy snow III is greater than the below-canopy V
(Figure 3b), an accumulation period-type assimilation with-
out allowance seems suitable. However, since the timing of
exact transition between early and late melt is not known
under current model and data constraints (or when the rela-
tive dominance between III and V switches), we again
implement a late melt period-style allowance. So when pre-
assimilation fSCAmodel is greater than the (fSCAsatellite þ
canopy area) upper bound and the assimilation process
reduces it to equality with that bound, the assimilation inac-
curacy increases: it is now the canopy area plus the differ-
ence between above-canopy III and below-canopy V. For
the case where the preassimilation fSCAmodel is less than the
fSCAsatellite lower bound, direct insertion assimilation inac-
curacy is absent. Note that this entire first-cut approach vio-
lates a SAC-HT evapotranspiration demand calculation
assumption that the snow areal proportion is the same in the
canopy and no-canopy areas, a shortcoming that future
refinements to the assimilation technique will address.

5.5. Description of the Direct-Insertion Assimilation
Simulations

[42] All simulations span September 1995 to Septem-
ber 2006, mirroring the DMIP2 simulation period. Data

assimilation starts when MODIS fSCA becomes available
(March 2000 for Terra MODIS), and we stress that a long
spin up period is not required for our application. Thus six
complete water years (WYs) (Octobers to Septembers) are
available for evaluating the assimilation procedure (WYs
2001–06). The SNODAS data series commences in October
2003, providing only three WYs for SWE comparison
(WYs 2004–06). Assimilation results for the SNODAS
3-WY period subset are similar to the 6-WY values and not
reported. Table 4 lists the multiple runs. The control run
corresponds to Figure 2a, the Mod assimilation run A to
Figures 2b–2d, the enhanced Mod runs B and C to Figures
2e and 2f, and the SWE-recreation assimilation run D to
Figures 2g and 2h. The uncalibrated control run serves as
the baseline against which to judge the performance of the
uncalibrated assimilation runs’ suite, and of an extra cali-
brated control run (denoted by Z) against which this suite
can be compared. Note that runs B and C differ from A in
having addressed the Ai upper limit and snow/no-snow
issues (see section 5.2).

5.6. Assimilation Performance Evaluation Measures

[43] We compute event-based and continuous measures.
Events considered are an evaluation period subset of DMIP2
events. We adapt DMIP’s event-based improvement meas-
ures [Smith et al., 2004] to calculate streamflow error
improvement from assimilation, against the control runs
(runs here are spatially distributed). These measures include:
flood runoff improvement, peak flow improvement and peak
time improvement (see Appendix A, equations (A1)–(A3)).
We also construct similar additional performance measures
where improvement is calculated as a percent of the control
run residual values instead of the observation values (see
Appendix A, equations (A4)–(A6)): we henceforth specifi-
cally call these ‘residual improvement measures’ as com-
pared to the former ones called ‘improvement measures’.
These residual improvement measures are more relevant for
determining how much the deviation of the control values
from the observations is reduced by the assimilation, espe-
cially where these control value deviations, and so improve-
ment measure values are low. In other words, where the
residual improvement measure is a high y %, a low improve-
ment measure at x % can theoretically improve to a value of
only around x�(100/y) % when the assimilation results
exactly match observations. This x�(100/y) % may still be of
the same order as x %, indicating little available room for
improvement.

Table 4. Descriptions and Notations Used for Assimilation Runs
and Calibrated Control Run Compared Against Uncalibrated
Control

Run Run Description Short Description

A Operational .AESCCHNG Mod assimilating
MODIS snow extents

MODIS: Mod

B Enhanced Mod assimilating MODIS without
allowance for snow under forest canopy

MODIS: No
UnsensedSnow

C Enhanced Mod assimilating MODIS with
allowance for snow under forest canopy

MODIS:
UnsensedSnow

D MODIS assimilation updating SWE with
allowance for snow under forest canopy

MODIS To SWE:
UnsensedSnow

Z Calibrated control run (for calculating
improvement against uncalibrated control)

–
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[44] Time-continuous streamflow improvement measures
for a multiple water year (WY) period are computed as the
average of corresponding single WY values. So streamflow
bias improvement and streamflow bias residual improvement
are the respective equivalents of the above mentioned event-
based measures concerning flood runoff (see Appendix A,
equations (A1) and (A4)). We also calculate the assimilation
run’s modified correlation coefficient and its improvement
over the control run (equations (A7) and (A8)). Next, we cal-
culate the percent of time steps where the assimilation run is
better than the control run, and the streamflow residual
improvement that occurs within those time steps (equations
(A9) and (A10)).

[45] We also use time-continuous SWE improvement
measures to assess basin-mean SWE. These are the SWE
bias improvement, SWE bias residual improvement, SWE
centroid date improvement and SWE centroid date residual
improvement (equations (A11)–(A14)). Note that possible
limitations of SNODAS SWE (very few gamma-ray flights
per melt season, etc.) can mean that conclusions based on
the SWE measures’ values are possibly ‘‘weaker’’ and so
used more for comparison than for evaluation.

6. Analysis of Results
[46] Figure 4 shows example melt season time series for

the uncalibrated Carson. Run B SWE and streamflow
decrease much faster (Figures 4b and 4c), due to MODIS
fSCA values decreasing to 0. This behavior is irrespective
of calibration or basin, and clearly shows the importance of
allowance for below-canopy snow in satellite-based fSCA
assimilation during melt. Figures 4d–4f plot monthly mean
streamflow residual improvement against observed stream-
flow, confirming that the crucial melt season has well-
performing assimilation time steps for some runs.

[47] We do not list peak timing measure values: though
residual improvements (RIt) can be substantial, the corre-
sponding actual improvements (It) are too low to be mean-
ingful. This means that the observed timing is already
well-reproduced here, even for the uncalibrated control.
Values for all other measures are in Table 5 and Figure 5.
Immediately noticeable is that while some uncalibrated run
streamflows do show improvement, the calibrated run stream-
flows mostly degrade, sometimes by a large amount. The
unavoidable allowance-related inaccuracy in our assimilation
compromises the combination of detailed physics representa-
tions and accurate satellite fSCA (in addition to a well-cali-
brated ADC) that is required to improve streamflow. For the
calibrated Carson example, this inaccuracy is likely larger
than the difference between the preadjustment fSCAmodel and
the fSCAtrue, leading to degraded streamflow. The opposite is
true for the well-performing uncalibrated Carson runs. We
assume an improvement as significant or substantial if the
percentage value for observation-related improvement meas-
ures (e.g., Iy, not the residual improvement measure RIy in
Appendix A is above five. This criterion cannot assign signifi-
cance to the SWE centroid date measures since Ic is in units
of days. Hereafter, we discuss uncalibrated run results rele-
vant to ungauged basins.

[48] The uncalibrated Carson run A (‘‘MODIS: Mod’’)
actually performs better than the control for SWE-related
RIW, IW, RIC and IC as depicted in Table 5, but displays

consistent degradation against the control run for all stream-
flow-related measures RIy, Iy, Irmod, and rmod, and low Bt

values. This apparent discrepancy is explained through vis-
ual examination of the high-biased SWE in uncalibrated run
A which fails to completely melt off during the summer (not
shown): since SWE in the control and in other assimilation
runs is mostly under-biased against SNODAS, higher SWE
values from assimilation can be closer to observations and
give a false impression of performance improvement (if
streamflow scores are ignored).

[49] SWE improvement measures RIW, IW, RIC and IC in
Table 5 consistently improve from run C (‘‘MODIS:
UnsensedSnow’’) to D (‘‘MODIS To SWE: Unsensed
Snow’’) regardless of basin or parameter calibration (not
ADC calibration). This indicates that fSCAsatellite recreates
SWE instantaneously using the ADC better than through
long-term ADC trajectory changes.

[50] The only assimilation run where a significant and
consistent improvement occurs in both SWE and stream-
flow is the best-performing uncalibrated Carson run D
(‘‘MODIS To SWE: UnsensedSnow’’). Corresponding
SWE improvement measures RIW and IW are 45% and 9%,
respectively (i.e., the average of the italicized ranges 42–
48% and 8–10% in Table 5). Similarly, Table 5 run D val-
ues for RIC, IC, streamflow RIy and Iy are 28% (from 27–
29%), 3.5 days (from 3.4–3.7 days), 68% (from 64–72%)
and 17% (from 16% to 18%), respectively. Although the
flood Iy and Ip values look significant for Gardnerville, their
values for the SNODAS-available 3-year subperiod fall
below the arbitrary 5% threshold. The uncalibrated Carson
run D also does not degrade performance in terms of corre-
lation (Figure 5), and features a high percentage of time
when its streamflow is better than the control run (Bt �
70%). Run D likely performs better than runs A–C for the
snow-dominated Carson because the below-canopy snow
allowance supports better updates that instantaneously use
the well-calibrated ADC to promptly propagate fSCA values
into better SWE values. This leads to better runoff and
streamflow (dominated by springtime snowmelt runoff) from
the large snowpack. Note that the performance of this uncali-
brated Carson run D is close to that of the calibrated run Z
across all improvement measures.

[51] Unlike the Carson wherein uncalibrated run D was
the consistent best performer, attempts to select a similar
run for the American are inconclusive. Uncalibrated run D
is generally best in terms of SWE bias (Table 5 highlighted
values are 25% and 10% for RIW and IW, respectively).
However, uncalibrated run B is best in terms of streamflow.
Corresponding streamflow bias measures RIy and Iy show
strong improvement with respective values of 81% and
22%. By contrast, flood runoff and flood peak improvement
values are modest : flood RIy, flood Iy, RIp and Ip are 8%,
6%, 6% and 8%, respectively. The mixed rain-on-snow re-
gime which characterizes the American leads to springtime
snowmelt from snowpacks that are thinner than those of the
Carson, and that account for less than one-third of the
yearly runoff. Two-thirds of the annual runoff occurs ear-
lier in the year from wintertime rainfall, where the assimi-
lation allowance-related uncertainty is much higher than
that in the Carson where the dominant runoff occurs toward
the late melt season (refer to section 5.4). The difference in
performance ranks when judging against SWE and
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streamflow may indicate the presence of SNODAS SWE
bias in such mixed rain-on-snow basins.

7. Discussion and Recommendations for Future
Work

[52] Improving modeled streamflow through assimilation
of satellite-measured snow area is an important research

contribution [Andreadis and Lettenmaier, 2006; Simpson
et al., 2004]. We attempt this for the hydrologically chal-
lenging example of two Western US mountainous, densely
forested basins (one snow-dominated and one rain- and
snow-dominated) used in DMIP2. We apply a cautious
below-canopy fSCA allowance during fSCA assimilation
to avoid degrading simulated streamflow due to the lack of
below-canopy measurements in the satellite fSCA product.

Figure 4. (a–c) Example precipitation, SWE, and streamflow plots: uncalibrated Carson runs for
May–July 2005 springtime melt season. (d–f) Corresponding monthly plots of mean of discharge resid-
ual improvement (by assimilation) against observed streamflow.
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The presence or absence of this allowance is one factor
which differentiates the suite of direct-insertion assimila-
tion runs presented in this study.

[53] Compared to the impacts of SWE assimilation noted
in other studies, the information content in observed fSCA
can be generally modest toward improving streamflow

simulations, especially over densely forested mountainous
domains. Our study found fSCA assimilation mostly
degraded streamflow for already well-performing calibrated
runs where an accurate combination of model and data is
required. This is because the below-canopy allowance inher-
ently introduces an inaccuracy into the simulation that is

Table 5. Performance Improvement Valuesa

Outlet

Uncalibrated

Run Z

Calibrated

Run A Run B Run C Run D Run A Run B Run C Run D

RIw (%)
Gardnerville 26 �18 �5 42 67 �1113 �57 �16 10
Markleeville 37 �18 �7 48 67 �1288 �5 �7 0
Blind 37 �18 �7 48 66 �1046 �75 �3 10
American �403 �3 �5 25 �12 26 �1 �7 34

Iw (%)
Gardnerville 5 �4 �1 8 13 �75 �4 �1 1
Markleeville 8 �4 �1 10 14 �88 0 0 0
Blind 8 �4 �1 10 14 �73 �5 0 1
American �153 �1 �2 10 �4 11 0 �3 15

RIc (%)
Gardnerville 78 �37 �8 29 25 45 �63 �1 12
Markleeville 73 �40 �9 27 20 48 �55 0 7
Blind 73 �40 �9 27 24 46 �63 �2 11
American �3 �242 �21 �3 �234 64 �42 �21 49

Ic (Days)
Gardnerville 10.1 �4.8 �1.0 3.7 3.2 4.4 �6.1 �0.1 1.1
Markleeville 9.1 �5.0 �1.1 3.4 2.5 4.8 �5.5 0.0 0.7
Blind 9.1 �5.0 �1.1 3.4 3.0 4.4 �6.0 �0.2 1.1
American �0.1 �8.6 �0.7 �0.1 �8.3 7.6 �4.9 �2.5 5.8

RIy (%) Streamflow
Gardnerville �122 �159 7 72 71 �462 �558 23 �100
Markleeville �86 �111 8 64 90 �1277 �1458 4 �249
Blind �86 �111 8 64 83 �773 �881 �14 �64
American 53 81 5 1 81 �72 �325 22 �45

Iy (%) Streamflow
Gardnerville �26 �34 2 16 15 �29 �35 1 �6
Markleeville �25 �32 2 18 26 �36 �41 0 �7
Blind �25 �32 2 18 24 �38 �43 �1 �3
American 14 22 1 0 22 �4 �17 1 �2

RIy (%) Flood
Gardnerville �99 �92 �1 19 28 �185 �155 �2 7
Markleeville �150 �132 3 33 29 �255 �161 �1 18
Blind �150 �132 3 33 16 �238 �183 �4 10
American 0 8 3 0 81 �2 16 3 0

Iy (%) Flood
Gardnerville �27 �25 0 5 7 �36 �30 0 1
Markleeville �27 �24 0 6 5 �33 �21 0 2
Blind �27 �24 0 6 3 �36 �28 �1 2
American 0 6 2 0 60 0 2 0 0

RIp (%)
Gardnerville �110 �104 �2 26 12 �159 �132 �2 5
Markleeville �126 �111 2 34 32 �216 �131 �2 10
Blind �126 �111 2 34 19 �201 �152 �3 7
American 2 6 5 0 78 6 14 3 2

Ip (%)
Gardnerville �29 �28 �1 7 3 �37 �31 0 1
Markleeville �28 �25 0 8 7 �33 �20 0 2
Blind �28 �25 0 8 4 �36 �28 �1 1
American 2 8 6 0 95 2 4 1 1

aSee Table 4 for run notations. Bold values are (assumed) significant improvements, italicized values are individually mentioned in sections 6 and 7.
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likely more than the distance of preadjustment modeled
fSCA (fSCAmodel) from the true value (fSCAtrue). However,
for uncalibrated runs, though the SNOW-17/SAC-HT control
run produces reasonably good streamflow performance,
fSCA assimilation still leads to: (1) substantial to major
improvements (64–81%) in streamflow volume as a percent-
age of the control run residuals (or distance from observa-
tions), and (2) minor improvements (16–22%) in streamflow
volume as a percentage of observed values. The apparent
difficulty in achieving multiobjective (i.e., all aspects of
streamflow and SWE) improvement is similar to that seen in

earlier studies such as Thirel et al. [2011] where application
of an ensemble Kalman filter (EnKF) led to improved timing
of snow extent depletion but degraded streamflow. These
challenges notwithstanding, the direct insertion technique
assessed in this study has the potential to benefit applications
over ungauged basins (coming close to the impact that cali-
bration has on model performance), especially for snow-
dominated basins where significant streamflow occurs during
the spring.

[54] Comparing this study’s results against those of ear-
lier studies is generally hampered by those studies having
either non-normalized objective functions like root mean
square error, or inappropriate normalized objective func-
tions (e.g., Roy et al. [2010] use the Nash coefficient with
the oft-used mean-of-observations benchmark rather than
with more appropriate benchmarks like calendar day or cli-
matology as explained by Schafeli and Gupta [2007]).
Where comparable, our results are at least of the same
order. For example, Thirel et al. [2011] employ both the
ensemble Kalman filter (EnKF) and particle filter techni-
ques on flatter basins, and their Table 3 MODIS assimila-
tion results show the discharge score ratio bias changing
from 0.13 for the control run to 0.09 for the assimilation.
This means that their streamflow volume residual bias
improvement (RIy) is 100�(0.13–0.09)/0.13 ¼ 31% and their
streamflow volume bias improvement (Iy) is 100�(0.13–
0.09) ¼ 4%. Our corresponding values for the uncalibrated
Carson and American simulations are 68% and 81%, respec-
tively, for RIy, and 17% and 22%, respectively, for Iy (see re-
spective italicized values of 72–64%, 81%, 16–18% and
22% in Table 5). We also reran all the simulations reported
in this paper with a lower (i.e., worse) confidence index ac-
ceptance threshold of 6% for the MODIS data [Rodell and
Houser, 2004; Zaitchik and Rodell, 2009] and found that the
conclusions remain valid with only a negligible degradation
in the results.

[55] In practice, deciding on an appropriate run configu-
ration based on our study suite will depend on the basin’s
characteristics such as whether it features dense or sparse
forest canopy, whether the majority of streamflow occurs
during wintertime or springtime etc. Consideration of, and
adjustment for, additional factors such as the time of the
year, the ongoing stage of snow season accumulation or
depletion, and whether the basin is snow-dominated or has
mixed rain-on-snow events may also prove beneficial. For
example, the American basin features significant winter-
time streamflow, possibly coinciding with times when the
intercepted snow extent and the amount on the canopy are
greater than the below-canopy amount. In this situation, it
could be advantageous to have the assimilation procedure
switch off the below-canopy snow allowance during win-
tertime streamflow/snow depletion, but activate it during
springtime snow depletion. This allowance for prolonged
below-canopy snow [e.g., Musselman et al., 2008], missed
by satellite instruments, is crucial when modeling the
springtime melt period (Figures 5b and 5c).

[56] Additionally, while the accurate determination of
the timing of the movement of snow from the canopy
downward to the ground would be vital in the selection of
the proper assimilation method, our snow model (and most
current hydrology models) do not include detailed canopy,
snow and optical radiative transfer physics. We believe that

Figure 5. Correlation with observations, improvement in
correlation over control, percent times when assimilation run
streamflow better than control, and corresponding % residual
improvement (Legend for 2-letter x axis tick label: G ¼
Gardnerville, M ¼ Markleeville, B ¼ Blind, A ¼ American,
U ¼ Uncalibrated, C ¼ Calibrated).
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such detailed process-oriented parameterizations providing
information on the snow extent above and below the can-
opy are the way forward for improving real-time stream-
flow simulations. It is possible that inclusion of such
processes would negate the need for calibrating the areal
depletion curve.

[57] In addition to more detailed process representation,
additional ways to improve assimilation results involve the
data (satellite-derived MODIS). The overall quality of
ingested snow data can be increased by switching off the
assimilation of lower satellite-observed values of fSCA
(like those below 25% that typically have errors, Riggs
et al. [2006]). Another way to use the distributed data con-
nected to the assimilation technique is through joint spatial
assimilation of the distributed extent values. Kolberg et al.
[2006] reported on such improvements judged against fully
distributed assimilation by Kolberg and Gottschalk [2006].
Joint spatial assimilation is possible and is a focus of ongoing
work for the model used in our study. In such over-constrained
problem involving the pixel and basin values, we are
implementing a SWE equilibrium achievement between
the individual and joint snow extents, SWEs and the deple-
tion curve for robustness and hydrologic consistency.

[58] Assimilation results here could be further improved
using better techniques to measure and differentiate precipi-
tation into rain and snow, e.g., the vertically pointing radar-
estimated bright-band height [Lundquist et al., 2008].
Finally, better results are possible for hydrologically less
complex basins (the vast majority of basins, which feature
gentler slopes or less forest canopy), given that improve-
ments were possible even in our challenging scenario study.

Appendix A

[59] (1) Flood runoff improvement and (2) streamflow
bias improvement (Iy, %: streamflow improvement
measure):

Iy ¼

XN

i¼1

ðjYo;i � Yc;ij � jYo;i � Ya;ijÞ

N � Yo;avg
100

(A1)

where Yo,i, Yc,i, and Ya,i are the runoff volumes of observa-
tions, control run, and assimilation run, respectively, for
the ith flood or water year (WY), Yo,avg is the average
observed flood event runoff volume for N flood events
or WYs.

[60] Peak flow improvement (Ip, %: streamflow event-
based measure):

Ip ¼

XN

i¼1

ðjQpo;i � Qpc;ij � jQpo;i � Qpa;ijÞ

N � Qpo;avg
100

(A2)

where Qpo,i, Qpc,i, and Qpa,i are the peak discharges of
observations, control run, and assimilation run, respec-
tively, for the ith event, Qpo,avg is the average observed
peak discharge for N events.

[61] Peak time improvement (It, hrs: streamflow event-
based measure):

It ¼

XN

i¼1

ðjTpo;i � Tpc;ij � jTpo;i � Tpa;ijÞ

N

(A3)

where Tpo,i, Tpc,i, and Tpa,i are the time (hrs) of observa-
tions, control run and assimilation run, respectively, for the
ith peak.

[62] (1) Flood runoff residual improvement and (2)
streamflow bias residual improvement (RIy, % : streamflow
measure):

RIy ¼

XN

i¼1

ðjYo;i � Yc;ij � jYo;i � Ya;ijÞ

XN

i¼1

jYo;i � Yc;ij
100 (A4)

[63] Peak flow residual improvement (RIp, %: streamflow
event-based measure):

RIp ¼

XN

i¼1

ðjQpo;i � Qpc;ij � jQpo;i � Qpa;ijÞ

XN

i¼1

jQpo;i � Qpc;ij
100 (A5)

[64] Peak time residual improvement (RIt, %: streamflow
event-based measure):

RIt ¼

XN

i¼1

ðjTpo;i � Tpc;ij � jTpo;i � Tpa;ijÞ

XN

i¼1

jTpo;i � Tpc;ij
100 (A6)

[65] Modified correlation coefficient (rmod: streamflow
continuous measure). From McCuen and Snyder [1975],
this eliminates the regular correlation coefficient’s tend-
ency to be overly influenced by outliers and to be insensi-
tive to differences in the hydrograph sizes:

rmod ¼
1

N

XN

i¼1

ri
min f�sim;i; �obs;ig
max f�sim;i; �obs;ig

� �
(A7)

where �sim,i and �obs,i are standard deviations of simulation
and observation series, respectively, for the ith WY, ri is
corresponding regular correlation coefficient.

[66] Improvement in modified correlation coefficient
(Irmod: streamflow continuous measure)

Irmod ¼
1

N

XN

i¼1

ðrmod ;a;i � rmod ;c;iÞ (A8)

where rmod,c,i and rmod,a,i are the control and assimilation
run rmod, respectively, for the ith WY.
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[67] Times where assimilation better than control (Bt, %:
streamflow continuous measure)

Bt ¼
1

N

XN

i¼1

NB;i

Ni

� �
100 (A9)

where NB,i is the number of time steps that assimilation re-
sidual (jQo;ji � Qa;jij) < control residual (jQo;ji � Qc;jij) for
the ith WY, Ni is corresponding number of time steps, Qo,ji,
Qc,ji, and Qa,ji are the observed, control and assimilation
run streamflows, respectively, at the jth time step.

[68] Streamflow residual improvement during times
with better assimilation (RIQ, %: streamflow continuous
measure)

IR ¼
1

N

XN

i¼1

100 1� 1

NB;i

XNB;i

ji¼1

jQo;ji � Qa;ji j
jQo;ji � Qc;ji j

 !" #
(A10)

where Qo,ji, Qc,ji and Qa,ji are the observed, control and
assimilation run streamflows, respectively, at the jth time
step of the ith WY.

[69] SWE bias improvement (IW, %: SWE continuous
measure):

IW ¼

XN

i¼1

ðjWom;i �Wcm;ij � jWom;i �Wam;ijÞ

NWom;avg
100

(A11)

where Wom,i, Wcm,i and Wam,i are the mean SWEs of refer-
ence (basin SNODAS), control run and assimilation run,
respectively, for the ith WY, Wom,avg is average reference
mean SWE (basin SNODAS) for N WYs.

[70] SWE bias residual improvement (RIW, %: SWE con-
tinuous measure) :

RIW ¼

XN

i¼1

ðjWom;i �Wcm;ij � jWom;i �Wam;ijÞ

XN

i¼1

jWom;i �Wcm;ij
100 (A12)

[71] SWE centroid date improvement (IC, Days: SWE
continuous measure):

IC ¼

XN

i¼1

ðjSCDo;i � SCDc;ij � jSCDo;i � SCDa;ijÞ

N

(A13)

where SCDo,i, SCDc,i and SCDa,i are the SWE centroid date
(days) of observations, control run and assimilation run,
respectively, for the ith WY,

[72] SCD for the ith WY is

XNi

ji¼1

ðji �Wj;iÞ

24:

XNi

ji¼1

ðWj;iÞ
,

[73] ji is the jth hour, and Wj,i is the SWE at ji.

[74] SWE centroid date residual improvement (RIC, %:
SWE continuous measure) :

RIC ¼

XN

i¼1

ðjSCDo;i � SCDc;ij � jSCDo;i � SCDa;ijÞ

XN

i¼1

jSCDo;i � SCDc;ij
100 (A14)
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